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LElTER TO THE EDITOR 

On the Pauli-Van Vleck formula for arbitrary quadratic 
systems with memory in one dimension 

L G Urmtia, J C D’Olivo and F Zertuche 
Centro de Estudios Nucleares, Universidad Nacional Aut6noma de MCxico, Circuit0 
Exterior, CU, 04510 MCxico, DF Mexico 

Received27 August 1985 

Abstract. The propagator for an arbitrary quadratic system with memory in one dimension 
is calculated using the Schwinger action principle. The propagator has the Pauli-Van Vleck 
form. 

In order to motivate this work and our method of calculation we would first like to 
make a brief comment on some results published earlier concerning the calculation of 
the propagator of quadratic systems with memory (Papadopoulos 1974, Maheshwari 
1975, Khandekar et a1 1983). The most general system considered so far is described 
by the action (Khandekar er al 1983) 

s = lor ( $mi2-  JOT G(t, s)(x(t) --x(s))* ds  d t  ) 
where G(t, s )  is an arbitrary symmetrical function of its arguments. This action 
includes, as a particular case, the Bezak kernel (Bezak 1970) whose propagator was 
obtained by Papadopoulos (1974) and Maheshwari (1975). Using path integral tech- 
niques Papadopoulos, Maheswari and Khandekar et a1 calculate the correiponding 
propagator and write it in terms of a quasi Pauli-Van Vleck formula: 

where S is the classical action and C f ( T )  is an extra normalisation factor such 
that IC,(T)ii# 1. In the Bezak case C,= (OT/sinOT)”2 and in the more general 
situation of the action ( l ) ,  C, is given in terms of the solutions of an integrodifferential 
equation together with an oscillator-type differential equation with time-dependent 
frequency. Of course, it is still necessary to solve the classical integrodifferential 
equation of motion in order to evaluate the classical action. 

Without going into any details of the path integral calculation it is very easy to 
convince oneself that the result (2) is wrong. In fact, the composition property 
(unitarity) 

coo 

(x”‘, r’lx”, t”)(x”, ~”IX’, r’) dx” = (x’”, t’lx‘, t ’ )  = S(xf” - x’) (3) 
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would be satisfied by propagators of the form (2) only if 

ICfl2= 1 (4) 

for any classical action given by 

S = A ( T ) X ‘ ~ + B ( T ) X ” ~ + C ( T ) X ’ X “ .  ( 5 )  

Incidentally, this expression for S is more general than that corresponding to (1). 
The immediate calculation of the left-hand side of (3) using (2j, together with 
(x‘, t’lx’’, t”) = (x”, ~”Ix’, t’)*, gives 

from a which condition (4) follows. 
Confronted with such an state of affairs it became apparent that a completely 

independent calculation of such propagators was necessary. Using the well known 
Schwinger action principle for quantum mechanics we have been able to extend all 
previous calculations, obtaining the propagator for an arbitrary one-dimensional system 
with memory described by the first order operator action (m = 1) 

S=[oTLdf=[oT(px-&?- JoTG(t,s; T){x(t) ,x(s)ds (7)  

Here x and p are the usual position and momentum operators and G(t ,  s, T )  is an 
arbitrary symmetrical function of f ,  s. The bracket {x( t) ,  x(s)} stands for the anticom- 
mutator of the corresponding position operators, which is necessary in order to have 
a Hermitian Lagrangian operator up to a total time derivative. We emphasise that the 
action ( 1 )  discussed by Khandekar er a1 (1983), together with those corresponding to 
all systems having interactions which are local in time, are just particular cases of (7) 
corresponding to different choices of the kernel G. 

Our result for the propagator related to the action (7) is 

e x p - ( 7 j ( T ) ~ ” ~ - ~ ( 0 ) ~ ’ ~ - 2 ~ ( O ) x ” x ‘ )  2h (8) 

given only in terms of the functions r]( f )  and &( 1 )  which are solutions of the classical 
equation of motion: 

i(t) + JOT G( f ,  s)z(s) ds = 0. 

&(O) = 1 

Such functions satisfy the following boundary conditions 

d o )  = 0 

5 ( T ) = 0  r ] (T)=l .  

( 9 )  

The notation in (8) is z(7)=dz(t)/dtIr=, .  It can also be shown that the function S 
appearing in the exponential term of (8), exp(iS/h), is indeed the classical action. 

The calculation of (8) proceeds essentially along the same lines as in the trivial 
case of the harmonic oscillator with constant frequency. We regard this as a virtue of 
the method instead of a drawback. The only point that requires special care is the 
verification for the general case (7) of some integrability conditions which arise from 
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the expression for S(x”, Tlx‘, 0) which is provided by the action principle. The details 
of our calculation will be presented elsewhere. 

Finally we comment that our propagator (8) exhausts all possible cases of quadratic 
systems without external forces in one dimension and that it is obviously of the 
Pauli-Van Vleck form. We conjecture that this result generalises to the three- 
dimensional case for quadratic interactions. 
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